talatekmen - PİRAMİT, KONİ VE KÜRE
  Ana Sayfa
  DOĞRUNUN EĞİMİ
  Trigonometrik Oranlar
  GEOMETRİK CİSİMLERİN SİMETRİLERİ
  EŞİTSİZLİKLER
  ÇOK KÜPLÜLER
  ÇOK YÜZLÜLER
  PERSPEKTİF ÇİZİMİ
  PİRAMİT, KONİ VE KÜRE
  PRİZMALARIN YÜZEY ALANLARI VE HACİMLERİ
  GEOMETRİK CİSİMLER
  ÜÇGENLERDE EŞLİK VE BENZERLİK
  DENKLEM SİSTEMLERİ
  KOMBİNASYON
  ÇARPANLARA AYIRMA
  ÖZDEŞLİKLER
  SAYI ÖRÜNTÜLER
  PİSAGOR BAĞINTISI
  ÜÇGENLER
  STANDART SAPMA
  GERÇEK SAYILAR
  KAREKÖKLÜ SAYILAR
  OLAY ÇEŞİTLERİ
  OLASILIK ÇEŞİTLER
  ÜSLÜ SAYILARDA İŞLEMLER
  HİSTOGRAM
  YANSIYAN, DÖNEN VE ÖTELENEN ŞEKİLLER
  FRAKTALLAR

PİRAMİT, KONİ VE KÜRE 
PİRAMİT

Bir düzlemde bulunan bir çokgen ile bu düzlemin dışında bir T noktası alalım.T noktası ile bu çokgenin tüm noktaları birleştirildiğinde oluşan cisme piramit denir.

Piramidin temel elemanları tepe noktası,tabanı,yan yüzleri,ayrıtları ve yüksekliğidir.Piramitte bulunan yükseklik tepenin taban düzlemine olan uzaklığıdır.Piramidin tepe noktasını taban merkezine yani ağırlık merkezine birleştiren doğru parçası tabana dik ise dik piramit,eğik ise eğik piramit olarak adlandırılır.

Dik Piramidin yüzey alanı= (taban alanı)+(yanal yüzeyin alanı)

A=Ta + Ya

Dik piramidin hacmi, eş tabana ve eş yüksekliğe sahip dikdörtgenler  prizmasının hacminin üçte birine eşittir.

Dik piramidin hacmi=[(taban alanı).(yükseklik)/3]

KONİ

Bir çemberin bütün noktalarının çemberin dışındaki bir nokta ile birleştirilmesinden elde edilen cisme koni denir.Bir başka deyişle tabanı daire olan piramittir.

Koninin temel elemanları bir dairesel bölge olan taban,tabanın dışında bir tepe noktası,tepe noktasını taban merkezine birleştiren doğru parçası olan eksen,tepeden geçen ve tabanın kenarı olan çembere dayanan ana doğru ve bu doğruların süpürdüğü yanal yüzeydir.Ekseni tabana dik olan koni dik koni veya dönel koni,eğik olan ise eğik koni olarak adlandırılır.Dik koniler, eksen etrafında dönmelerde dönme simetrisine sahiptir.

x=açı

a=ana doğru

r=yarıçap

h=yükseklik

Koninin yüzey alanı=(taban alanı)+(yanal alanı)

Koninin yüzey alanı=[(pi sayısı).(r2)]+ [(pi sayısı).(a2).(x/360)]

Bir dik koninin hacmi, eş taban ve eş yüksekliğe sahip silindirin hacminin üçte birine eşittir.

Konin hacmi=(silindirin hacmi)/3=[(pi sayısı).r2.h]/3

KÜRE

Uzayda sabit bir noktadan sabit ve eşit uzaklıkta bulunan noktaların birleşim kümesine küre denir.Bir başka deyişle bir yarım dairenin çapı etrafında 360 derece döndürülmesiyle oluşan cisme küre denir.

Kürenin temel elemanları merkezi,yarıçapı ve yüzeyidir.Merkezden geçen düzlemlerle küre yüzeyinin ara kesitine büyük çember denir.Bu şekilde oluşan dairenin çapı ise kürenin çapıdır.

Yarıçapı r olan kürenin yüzey alanı, en büyük dairesinin alanının 4 katıdır.

r=kürenin yarıçapı

Kürenin yüzey alanı=4.(pi sayısı).r2

Kürenin hacmi=(4/3).(pi sayısı).r3

piramitkonikure

 



 

Bugün 1 ziyaretçi (1 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol